3,104 research outputs found

    Nonequilibrium electron spectroscopy of Luttinger liquids

    Full text link
    Understanding the effects of nonequilibrium on strongly interacting quantum systems is a challenging problem in condensed matter physics. In dimensions greater than one, interacting electrons can often be understood within Fermi-liquid theory where low-energy excitations are weakly interacting quasiparticles. On the contrary, electrons in one dimension are known to form a strongly-correlated phase of matter called a Luttinger liquid (LL), whose low-energy excitations are collective density waves, or plasmons, of the electron gas. Here we show that spectroscopy of locally injected high-energy electrons can be used to probe energy relaxation in the presence of such strong correlations. For detection energies near the injection energy, the electron distribution is described by a power law whose exponent depends in a continuous way on the Luttinger parameter, and energy relaxation can be attributed to plasmon emission. For a chiral LL as realized at the edge of a fractional quantum Hall state, the distribution function grows linearly with the distance to the injection energy, independent of filling fraction.Comment: 4+ pages, 3 figure

    X-ray Development of the Classical Nova V2672 Ophiuchi with Suzaku

    Full text link
    We report the Suzaku detection of a rapid flare-like X-ray flux amplification early in the development of the classical nova V2672 Ophiuchi. Two target-of-opportunity ~25 ks X-ray observations were made 12 and 22 days after the outburst. The flux amplification was found in the latter half of day 12. Time-sliced spectra are characterized by a growing supersoft excess with edge-like structures and a relatively stable optically-thin thermal component with Ka emission lines from highly ionized Si. The observed spectral evolution is consistent with a model that has a time development of circumstellar absorption, for which we obtain the decline rate of ~10-40 % in a time scale of 0.2 d on day 12. Such a rapid drop of absorption and short-term flux variability on day 12 suggest inhomogeneous ejecta with dense blobs/holes in the line of sight. Then on day 22 the fluxes of both supersoft and thin-thermal plasma components become significantly fainter. Based on the serendipitous results we discuss the nature of this source in the context of both short- and long-term X-ray behavior.Comment: To appear in PASJ; 9 pages, 5 figures, 2 table

    Magmatic focusing to mid-ocean ridges: the role of grain size variability and non-Newtonian viscosity

    Get PDF
    Melting beneath mid-ocean ridges occurs over a region that is much broader than the zone of magmatic emplacement to form the oceanic crust. Magma is focused into this zone by lateral transport. This focusing has typically been explained by dynamic pressure gradients associated with corner flow, or by a sub-lithospheric channel sloping upward toward the ridge axis. Here we discuss a novel mechanism for magmatic focusing: lateral transport driven by gradients in compaction pressure within the asthenosphere. These gradients arise from the co-variation of melting rate and compaction viscosity. The compaction viscosity, in previous models, was given as a function of melt fraction and temperature. In contrast, we show that the viscosity variations relevant to melt focusing arise from grain-size variability and non-Newtonian creep. The asthenospheric distribution of melt fraction predicted by our models provides an improved ex- planation of the electrical resistivity structure beneath one location on the East Pacific Rise. More generally, although grain size and non-Newtonian viscosity are properties of the solid phase, we find that in the context of mid-ocean ridges, their effect on melt transport is more profound than their effect on the mantle corner-flow.Comment: 20 pages, 4 figures, 1 tabl

    Time domain Einstein-Podolsky-Rosen correlation

    Get PDF
    We experimentally demonstrate creation and characterization of Einstein-Podolsky-Rosen (EPR) correlation between optical beams in the time domain. The correlated beams are created with two independent continuous-wave optical parametric oscillators and a half beam splitter. We define temporal modes using a square temporal filter with duration TT and make time-resolved measurement on the generated state. We observe the correlations between the relevant conjugate variables in time domain which correspond to the EPR correlation. Our scheme is extendable to continuous variable quantum teleportation of a non-Gaussian state defined in the time domain such as a Schr\"odinger cat-like state.Comment: 4 pages, 4 figure

    Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations

    Full text link
    For a higher order linear ordinary differential operator P, its Stokes curve bifurcates in general when it hits another turning point of P. This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in resolving a paradox recently found in the Noumi-Yamada system, a system of linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure

    Evolution of the single-hole spectral function across a quantum phase transition in the anisotropic-triangular-lattice antiferromagnet

    Full text link
    We study the evolution of the single-hole spectral function when the ground state of the anisotropic-triangular-lattice antiferromagnet changes from the incommensurate magnetically-ordered phase to the spin-liquid state. In order to describe both of the ground states on equal footing, we use the large-N approach where the transition between these two phases can be obtained by controlling the quantum fluctuations via an 'effective' spin magnitude. Adding a hole into these ground states is described by a t-J type model in the slave-fermion representation. Implications of our results to possible future ARPES experiments on insulating frustrated magnets, especially Cs2_2CuCl4_4, are discussed.Comment: 8 pages, 7 figure

    Nonequilibrium quantum criticality in bilayer itinerant ferromagnets

    Full text link
    We present a theory of nonequilibrium quantum criticality in a coupled bilayer system of itinerant electron magnets. The model studied consists of the first layer subjected to an inplane current and open to an external substrate. The second layer is closed and subject to no direct external drive, but couples to the first layer via short-ranged spin exchange interaction. No particle exchange is assumed between the layers. Starting from a microscopic fermionic model, we derive an effective action in terms of two coupled bosonic fields which are related to the magnetization fluctuations of the two layers. When there is no interlayer coupling, the two bosonic modes possess different dynamical critical exponents z with z=2 (z=3) for the first (second) layer. This results in multi-scale quantum criticality in the coupled system. It is shown that the linear coupling between the two fields leads to a low energy fixed point characterized by the larger dynamical critical exponent z=3. The perturbative renormalization group is used to compute the correlation length in the quantum disordered and quantum critical regimes. We also derive the stochastic dynamics obeyed by the critical fluctuations in the quantum critical regime. Comparing the nonequilibrium situation to the thermal equilibrium scenario, where the whole system is at a temperature T, we find that the nonequilibrium drive does not always play the role of temperature.Comment: 20+ pages, 3 figures; Revised version as accepted by PRB, added figure of mean field phase diagra
    • …
    corecore